(Main) Peer-Reviewed Articles
2023
2022
-
Cremaschini A., Punzo A., Martellucci E. and Maruotti A. (2022).
On stylized facts of cryptocurrencies returns and their relationship with other assets, with a focus on the impact of COVID-19.
Applied Economics incorporating Applied Financial Economics, (forthcoming).
- Punzo A. and Bagnato L. (2022).
Multiple scaled symmetric distributions in allometric studies.
The International Journal of Biostatistics, 18(1), 219–242.
- Gallaugher M. P. B., Tomarchio S. D., McNicholas P. D. and Punzo A. (2022).
Multivariate Cluster Weighted Models Using Skewed Distributions.
Advances in Data Analysis and Classification, 16(1), 93–124.
- Merlo L., Maruotti A., Petrella L. and Punzo A. (2022).
Quantile hidden semi-Markov models for multivariate time series.
Statistics and Computing, 32, 61.
- Tomarchio S. D., Punzo A. and Maruotti A. (2022).
Parsimonious Hidden Markov Models for matrix-variate longitudinal data.
Statistics and Computing, 32, 53.
- Gallaugher M. P. B., Tomarchio S. D., McNicholas P. D. and Punzo A. (2022).
Model-based clustering via skewed matrix-variate cluster-weighted models.
Journal of Statistical Computation and Simulation, 92(13), 2645-2666.
- Punzo A. and Bagnato L. (2022).
Dimension-wise scaled normal mixtures with application to finance and biometry.
Journal of Multivariate Analysis, 191, 105020.
- Tomarchio S. D., Bagnato L. and Punzo A. (2022).
Model-based clustering via new parsimonious mixtures of heavy tailed distributions.
AStA Advances in Statistical Analysis, 106(2), 315-347.
- Bagnato L., Punzo A. and Zoia M. G. (2022).
Leptokurtic moment-parameterized elliptically contoured distributions with application to financial stock returns.
Communications in Statistics - Theory and Methods, 51(2), 486-500.
- Tomarchio S. D., Gallaugher M. P. B., Punzo A. and McNicholas P. D. (2022).
Mixtures of Matrix-Variate Contaminated Normal Distributions.
Journal of Computational and Graphical Statistics, 31(2), 413-421.
2021
- Di Mari R., Dotto F., Farcomeni A. and Punzo A. (2021).
Assessing Measurement Invariance for Longitudinal Data through Latent Markov Models.
Structural Equation Modeling: A Multidisciplinary Journal, 29(3), 381-393.
- Tomarchio S. D., McNicholas P. D. and Punzo A. (2021).
Matrix Normal Cluster-Weighted Models.
Journal of Classification, 38(3), 556-575.
- Maruotti A. and Punzo A. (2021).
Initialization of hidden Markov and semi-Markov models: a critical evaluation of several strategies.
International Statistical Review, 89(3), 447-480.
- Punzo A. and Tortora C. (2021).
Multiple scaled contaminated normal distribution and its application in clustering.
Statistical Modelling, 21(4), 332–358.
- Bagnato L. and Punzo A. (2021).
Unconstrained representation of orthogonal matrices with application to common principal components.
Computational Statistics, 36(2), 1177–1195.
- Punzo A., Ingrassia S. and Maruotti A. (2021).
Multivariate hidden Markov regression models: random covariates and heavy-tailed distributions.
Statistical Papers, 62(3), 1519–1555.
- Punzo A. and Bagnato L. (2021).
The multivariate tail-inflated normal distribution and its application in finance.
Journal of Statistical Computation and Simulation, 91(1), 1–36.
- Punzo A. and Bagnato L. (2021).
Modelling the cryptocurrency return distribution via Laplace scale mixtures.
Physica A: Statistical Mechanics and its Applications, 563(1), 125354.
2020
- Farcomeni A. and Punzo A. (2020).
Robust model-based clustering with mild and gross outliers.
TEST, 29(4), 989–1007.
- Punzo A. and Bagnato L. (2020).
Allometric analysis using the multivariate shifted exponential normal distribution.
Biometrical Journal, 62(6), 1525–1543.
- Tomarchio S. D., Punzo A. and Bagnato L. (2020).
Two new matrix-variate distributions with application in model-based clustering.
Computational Statistics & Data Analysis, 152, 107050.
- Tomarchio S. D. and Punzo A. (2020).
Dichotomous unimodal compound models: Application to the distribution of insurance losses.
Journal of Applied Statistics, 47(13–15), 2328–2353.
- Ingrassia S. and Punzo A. (2020).
Cluster validation for mixtures of regressions via the total sum of squares decomposition.
Journal of Classification, 37(2), 526–547.
- Di Mari R., Bakk Z. and Punzo A. (2020).
A random-covariate approach for distal outcome prediction with latent class analysis.
Structural Equation Modeling: A Multidisciplinary Journal, 27(3): 351–368.
- Mazza A. and Punzo A. (2020).
Mixtures of multivariate contaminated normal regression models.
Statistical Papers, 61(2), 787–822.
- Punzo A., Blostein M. and McNicholas P. D. (2020).
High-dimensional unsupervised classification via parsimonious contaminated mixtures.
Pattern Recognition, 98, 107031.
2019
- Tomarchio S. D. and Punzo A. (2019).
Modelling the loss given default distribution via a family of zero-and-one inflated mixture models.
Journal of the Royal Statistical Society: Series A, 182(4), 1247–1266.
- Zarei S., Mohammadpour A., Ingrassia S. and Punzo A. (2019).
On the use of the sub-Gaussian α-stable distribution in the cluster-weighted model.
Iranian Journal of Science and Technology, Transactions A: Science, 43(3), 1059–1069.
- Punzo A. (2019).
A new look at the inverse Gaussian distribution with applications to insurance and economic data.
Journal of Applied Statistics, 46(7), 1260–1287.
- Maruotti A., Punzo A. and Bagnato L. (2019).
Hidden Markov and semi-Markov models with multivariate leptokurtic-normal components for robust modeling of daily returns series.
Journal of Financial Econometrics, 17(1), 91–117.
- Morris K., Punzo A., McNicholas P. D. and Browne R. P. (2019).
Asymmetric Clusters and Outliers: Mixtures of Multivariate Contaminated Shifted Asymmetric Laplace Distributions.
Computational Statistics & Data Analysis, 132, 145–166.
2018
- Mazza A., Punzo A. and Ingrassia S. (2018).
flexCWM: A Flexible Framework for Cluster-Weighted Models.
Journal of Statistical Software, 86(2), 1–30.
- Punzo A., Mazza A. and Maruotti A. (2018).
Fitting insurance and economic data with outliers: A flexible approach based on finite mixtures of contaminated gamma distributions.
Journal of Applied Statistics, 45(14), 2563–2584.
- Punzo A., Mazza A. and McNicholas P. D. (2018).
ContaminatedMixt: An R Package for Fitting Parsimonious Mixtures of Multivariate Contaminated Normal Distributions.
Journal of Statistical Software, 85(10), 1–25.
- Punzo A., Bagnato L. and Maruotti A. (2018).
Compound unimodal distributions for insurance losses.
Insurance: Mathematics and Economics, 81, 95–107.
- Bagnato L., De Capitani L. and Punzo A. (2018).
Testing for serial independence: Beyond the Portmanteau approach.
The American Statistician, 72(3), 219–238.
- Punzo A., Ingrassia S. and Maruotti A. (2018).
Multivariate generalized hidden Markov regression models with random covariates: physical exercise in an elderly population.
Statistics in Medicine, 37(19), 2797–2808.
2017
- Punzo A. and McNicholas P. D. (2017).
Robust clustering in regression analysis via the contaminated Gaussian cluster-weighted model.
Journal of Classification, 34(2), 249–293.
- Maruotti A. and Punzo A. (2017).
Model-based time-varying clustering of multivariate longitudinal data with covariates and outliers.
Computational Statistics & Data Analysis, 113, 475–496.
- Mazza A. and Punzo A. (2017).
Dealing with omitted answers in a survey on social integration of immigrants in Italy.
Mathematical Population Studies, 24(2), 84–102.
- Dang U. J., Punzo A., McNicholas P. D., Ingrassia S. and Browne R. P. (2017).
Multivariate response and parsimony for Gaussian cluster-weighted models.
Journal of Classification, 34(1), 4–34.
- Bagnato L., Punzo A. and Zoia M. G. (2017).
The multivariate leptokurtic-normal distribution and its application in model-based clustering.
Canadian Journal of Statistics, 45(1), 95–119.
- Bagnato L., De Capitani L. and Punzo A. (2017).
A diagram to detect serial dependencies: an application to transport time series.
Quality & Quantity, 51(2), 581–594.
2016
- Berta P., Ingrassia S., Punzo A. and Vittadini G. (2016).
Multilevel cluster-weighted models for the evaluation of hospitals.
METRON, 74(3), 275–292.
- Punzo A. and Maruotti A. (2016).
Clustering multivariate longitudinal observations: The contaminated Gaussian hidden Markov model.
Journal of Computational and Graphical Statistics, 25(4), 1097–1116.
- Punzo A. and McNicholas P. D. (2016).
Parsimonious mixtures of multivariate contaminated normal distributions.
Biometrical Journal, 58(6), 1506–1537.
- Bagnato L., De Capitani L. and Punzo A. (2016).
The Kullback-Leibler autodependogram.
Journal of Applied Statistics, 43(14), 2574–2594.
- Mazza A. and Punzo A. (2016).
Spatial attraction in migrants' settlement patterns in the city of Catania.
Demographic Research, 35(5), 117–138.
- Maruotti A., Punzo A., Mastrantonio G. and Lagona F. (2016).
A time-dependent extension of the projected normal regression model for longitudinal circular data based on a hidden Markov heterogeneity structure.
Stochastic Environmental Research and Risk Assessment, 30(6), 1725–1740.
- Punzo A. and Ingrassia S. (2016).
Clustering bivariate mixed-type data via the cluster-weighted model.
Computational Statistics, 31(3), 989–1013.
- Punzo A., Browne R. P. and McNicholas P. D. (2016).
Hypothesis testing for mixture model selection.
Journal of Statistical Computation and Simulation, 86(14): 2797–2818.
- Ingrassia S. and Punzo A. (2016).
Decision boundaries for mixtures of regressions.
Journal of the Korean Statistical Society, 45(2): 295–306.
2015
- Subedi S., Punzo A., Ingrassia S. and McNicholas P. D. (2015).
Cluster-weighted t-factor analyzers for robust model-based clustering and dimension reduction.
Statistical Methods & Applications, 24(4): 623–649.
- Ingrassia S., Punzo A., Vittadini G. and Minotti S. C. (2015).
The generalized linear mixed cluster-weighted model.
Journal of Classification, 32(1): 85–113.
- Mazza A. and Punzo A. (2015).
Bivariate discrete beta kernel graduation of mortality data.
Lifetime Data Analysis, 21(3): 419–433.
- Bagnato L., De Capitani L., Mazza A. and Punzo A. (2015).
SDD: An R package for serial dependence diagrams.
Journal of Statistical Software, 64(Code Snippet 2): 1–19.
- Mazza A. and Punzo A. (2015).
On the upward bias of the dissimilarity index and its corrections.
Sociological Methods & Research, 44(1): 80–107.
2014
- Bagnato L., De Capitani L. and Punzo A. (2014).
Testing serial independence via density-based measures of divergence.
Methodology and Computing in Applied Probability, 16(3): 627–641.
- Mazza A., Punzo A. and McGuire B. (2014).
KernSmoothIRT: An R package for kernel smoothing in Item Response Theory.
Journal of Statistical Software, 58(6): 1–34.
- Punzo A. (2014).
Flexible mixture modeling with the polynomial Gaussian cluster-weighted model.
Statistical Modelling, 14(3): 257–291.
- Mazza A. and Punzo A. (2014).
DBKGrad: An R package for mortality rates graduation by fixed and adaptive discrete beta kernel techniques.
Journal of Statistical Software, 57(Code Snippet 2): 1–18.
- Bagnato L., De Capitani L. and Punzo A. (2014).
Detecting serial dependencies with the reproducibility probability autodependogram.
AStA Advances in Statistical Analysis, 98(1): 35–61.
- Bertoli-Barsotti L. and Punzo A. (2014).
Refusal to answer specific questions in a survey: A case study.
Communications in Statistics - Theory and Methods, 43(4): 826–838.
- Ingrassia S., Minotti S. C. and Punzo A. (2014).
Model-based clustering via linear cluster-weighted models.
Computational Statistics & Data Analysis, 71(4): 159–182.
- Bagnato L., Greselin F. and Punzo A. (2014).
On the spectral decomposition in normal discriminant analysis.
Communications in Statistics - Simulation and Computation, 43(6): 1471–1489.
2013
2012
2011
2010
2009
Book Chapters
- Punzo A. and Tomarchio S. D. (2022).
Parsimonious finite mixtures of matrix-variate regressions.
In: Bekker A., Ferreira J. T., Arashi M., Chen D. G. (Eds.),
Innovations in Multivariate Statistical Modeling,
Emerging Topics in Statistics and Biostatistics, pp. 385-398, Cham, Switzerland: Springer.
- Di Mari R., Ingrassia S. and Punzo A. (2021).
A generalized coefficient of determination for mixtures of regressions.
In: Chadjipadelis T., Lausen B., Markos A., Lee T. R., Montanari A., Nugent R. (Eds.),
Data Analysis and Rationality in a Complex World,
Studies in Classification, Data Analysis, and Knowledge Organization, pp. 27-35, AG, Switzerland: Springer Nature.
- Mazza A., Battisti M., Ingrassia S. and Punzo A. (2019).
Modeling return to education in heterogeneous populations. An application to Italy.
In: Greselin I., Deldossi L., Bagnato L., Vichi M. (Eds.),
Statistical Learning of Complex Data,
Studies in Classification, Data Analysis, and Knowledge Organization, pp. 121-131, Switzerland: Springer International Publishing.
- Mazza A. and Punzo A. (2019).
Modeling Household Income with Contaminated Unimodal Distributions.
In: Petrucci A., Racioppi F., Verde R. (Eds.),
New Statistical Developments in Data Science,
Springer Proceedings in Mathematics & Statistics, vol. 288, pp. 373-391, Switzerland: Springer Nature.
- Punzo A. and Ingrassia S. (2015).
Parsimonious Generalized Linear Gaussian Cluster-Weighted Models.
In: Morlini I., Minerva T., Vichi M. (Eds.),
Advances in Statistical Models for Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization, pp. 201-209, Switzerland: Springer International Publishing.
- Bertoli-Barsotti L., Lando T. and Punzo A. (2014).
Estimating a Rasch Model via Fuzzy Empirical Probability Functions.
In: Vicari D., Okada A., Ragozini G., Weihs C. (Eds.),
Analysis and Modeling of Complex Data in Behavioural and Social Sciences,
Studies in Classification, Data Analysis, and Knowledge Organization, pp. 29-36, Switzerland: Springer International Publishing.
- Mazza A. and Punzo A. (2013).
Graduation by Adaptive Discrete Beta Kernels.
In: Giusti A., Ritter G., Vichi M. (Eds.),
Classification and Data Mining,
Studies in Classification, Data Analysis, and Knowledge Organization, pp. 243–250, Berlin Heidelberg: Springer-Verlag.
- Bagnato L. and Punzo A. (2013).
Using the Autodependogram in Model Diagnostic Checking.
In: Pesarin F., Torelli N., Bar-Hen A. (Eds.),
Advances in Theoretical and Applied Statistics,
Studies in Theoretical and Applied Statistics, pp. 129–139, Berlin Heidelberg: Springer-Verlag.
- Mazza A. and Punzo A. (2013).
Using the Variation Coefficient for Adaptive Discrete Beta Kernel Graduation.
In: Giudici P., Ingrassia S., Vichi M. (Eds.),
Statistical Models for Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization, pp. 225–232, Switzerland: Springer International Publishing.
- Bagnato L. and Punzo A. (2012).
Checking Serial Independence of Residuals from a Nonlinear Model.
In: Gaul W., Geyer-Schulz A., Schmidt-Thieme L., Kunze J. (Eds.),
Challenges at the Interface of Data Analysis, Computer Science, and Optimization,
Studies in Theoretical and Applied Statistics, pp. 203–211, Berlin Heidelberg: Springer-Verlag.
- Mazza A. and Punzo A. (2011).
Discrete Beta Kernel Graduation of Age-Specific Demographic Indicators.
In: Ingrassia S., Rocci R., Vichi M. (Eds.),
New Perspectives in Statistical Modeling and Data Analysis,
Studies in Classification, Data Analysis, and Knowledge Organization, pp. 127–134, Berlin Heidelberg: Springer-Verlag.
- Punzo A. (2010).
Considerations on the Impact of Ill-Conditioned Configurations in the CML Approach..
In: Fink A., Lausen B., Seidel W., Ultsch A. (Eds.),
Advances in Data Analysis, Data Handling and Business Intelligence,
Studies in Classification, Data Analysis, and Knowledge Organization, pp. 563–572, Berlin Heidelberg: Springer-Verlag.
- Punzo A. (2010).
Discrete Beta-Type Models.
In: Locarek-Junge H., Weihs C. (Eds.),
Classification as a Tool for Research,
Studies in Classification, Data Analysis, and Knowledge Organization, pp. 253–261, Berlin Heidelberg: Springer-Verlag.